TY - GEN
T1 - Analyzing the effectiveness of adversary modeling in security games
AU - Nguyen, Thanh H.
AU - Yang, Rong
AU - Azaria, Amos
AU - Kraus, Sarit
AU - Tambe, Milind
N1 - Place of conference:USA
PY - 2013
Y1 - 2013
N2 - Recent deployments of Stackelberg security games (SSG) have led to two competing approaches to handle boundedly rational human adversaries: (1) integrating models of human (adversary) decision-making into the game-theoretic algorithms, and (2) applying robust optimization techniques that avoid adversary modeling. A recent algorithm (MATCH) based on the second approach was shown to outperform the leading modeling-based algorithm even in the presence of significant amount of data. Is there then any value in using human behavior models in solving SSGs? Through extensive experiments with 547 human subjects playing 11102 games in total, we emphatically answer the question in the affirmative, while providing the following key contributions: (i) we show that our algorithm, SU-BRQR, based on a novel integration of human behavior model with the subjective utility function, significantly outperforms both MATCH and its improvements; (ii) we are the first to present experimental results with security intelligence experts, and find that even though the experts are more rational than the Amazon Turk workers, SU-BRQR still outperforms an approach assuming perfect rationality (and to a more limited extent MATCH); (iii) we show the advantage of SU-BRQR in a new, large game setting and demonstrate that sufficient data enables it to improve its performance over MATCH.
AB - Recent deployments of Stackelberg security games (SSG) have led to two competing approaches to handle boundedly rational human adversaries: (1) integrating models of human (adversary) decision-making into the game-theoretic algorithms, and (2) applying robust optimization techniques that avoid adversary modeling. A recent algorithm (MATCH) based on the second approach was shown to outperform the leading modeling-based algorithm even in the presence of significant amount of data. Is there then any value in using human behavior models in solving SSGs? Through extensive experiments with 547 human subjects playing 11102 games in total, we emphatically answer the question in the affirmative, while providing the following key contributions: (i) we show that our algorithm, SU-BRQR, based on a novel integration of human behavior model with the subjective utility function, significantly outperforms both MATCH and its improvements; (ii) we are the first to present experimental results with security intelligence experts, and find that even though the experts are more rational than the Amazon Turk workers, SU-BRQR still outperforms an approach assuming perfect rationality (and to a more limited extent MATCH); (iii) we show the advantage of SU-BRQR in a new, large game setting and demonstrate that sufficient data enables it to improve its performance over MATCH.
UR - http://www.scopus.com/inward/record.url?scp=84893350174&partnerID=8YFLogxK
M3 - منشور من مؤتمر
SN - 9781577356158
T3 - Proceedings of the 27th AAAI Conference on Artificial Intelligence, AAAI 2013
SP - 718
EP - 724
BT - Proceedings of the 27th AAAI Conference on Artificial Intelligence, AAAI 2013
T2 - 27th AAAI Conference on Artificial Intelligence, AAAI 2013
Y2 - 14 July 2013 through 18 July 2013
ER -