Analytical results for the error in filtering of Gaussian processes

Alex Susemihl, Ron Meir, Manfred Opper

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Bayesian filtering of stochastic stimuli has received a great deal of attention recently. It has been applied to describe the way in which biological systems dynamically represent and make decisions about the environment. There have been no exact results for the error in the biologically plausible setting of inference on point process, however. We present an exact analysis of the evolution of the meansquared error in a state estimation task using Gaussian-tuned point processes as sensors. This allows us to study the dynamics of the error of an optimal Bayesian decoder, providing insights into the limits obtainable in this task. This is done for Markovian and a class of non-Markovian Gaussian processes. We find that there is an optimal tuning width for which the error is minimized. This leads to a characterization of the optimal encoding for the setting as a function of the statistics of the stimulus, providing a mathematically sound primer for an ecological theory of sensory processing.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 24
Subtitle of host publication25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
StatePublished - 2011
Event25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011 - Granada, Spain
Duration: 12 Dec 201114 Dec 2011

Publication series

NameAdvances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011

Conference

Conference25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
Country/TerritorySpain
CityGranada
Period12/12/1114/12/11

All Science Journal Classification (ASJC) codes

  • Information Systems

Fingerprint

Dive into the research topics of 'Analytical results for the error in filtering of Gaussian processes'. Together they form a unique fingerprint.

Cite this