Analytical modeling for heat transfer in sheared flows of nanofluids

Claudio Ferrari, Badr Kaoui, Victor Lvov, Itamar Procaccia, Oleksii Rudenko, J. H. M. ten Thije Boonkkamp, Federico Toschi

Research output: Contribution to journalArticlepeer-review

Abstract

We developed a model for the enhancement of the heat flux by spherical and elongated nanoparticles in sheared laminar flows of nanofluids. Besides the heat flux carried by the nanoparticles, the model accounts for the contribution of their rotation to the heat flux inside and outside the particles. The rotation of the nanoparticles has a twofold effect: it induces a fluid advection around the particle and it strongly influences the statistical distribution of particle orientations. These dynamical effects, which were not included in existing thermal models, are responsible for changing the thermal properties of flowing fluids as compared to quiescent fluids. The proposed model is strongly supported by extensive numerical simulations, demonstrating a potential increase of the heat flux far beyond the Maxwell-Garnett limit for the spherical nanoparticles. The road ahead, which should lead toward robust predictive models of heat flux enhancement, is discussed.
Original languageEnglish
Article number016302
JournalPhysical Review E
Volume86
Issue number1
DOIs
StatePublished - Jul 2012

Fingerprint

Dive into the research topics of 'Analytical modeling for heat transfer in sheared flows of nanofluids'. Together they form a unique fingerprint.

Cite this