An upper bound on the sum capacity of the downlink multicell processing with finite backhaul capacity

Tianyu Yang, Nan Liu, Wei Kang, Shlomo Shamai

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this paper, we study upper bounds on the sum capacity of the downlink multicell processing model with finite backhaul capacity for the simple case of 2 base stations and 2 mobile users. It is modeled as a two-user multiple access diamond channel. It consists of a first hop from the central processor to the base stations via orthogonal links of finite capacity, and the second hop from the base stations to the mobile users via a Gaussian interference channel. The upper bound is derived using the converse tools of the multiple access diamond channel and that of the Gaussian MIMO broadcast channel. Through numerical results, it is shown that our upper bound improves upon the existing upper bound greatly in the medium backhaul capacity range, and as a result, the gap between the upper bounds and the sum rate of the time-sharing of the known achievable schemes is significantly reduced.

Original languageEnglish
Title of host publication2017 IEEE International Symposium on Information Theory, ISIT 2017
Pages2053-2057
Number of pages5
ISBN (Electronic)9781509040964
DOIs
StatePublished - 9 Aug 2017
Event2017 IEEE International Symposium on Information Theory, ISIT 2017 - Aachen, Germany
Duration: 25 Jun 201730 Jun 2017

Publication series

NameIEEE International Symposium on Information Theory - Proceedings

Conference

Conference2017 IEEE International Symposium on Information Theory, ISIT 2017
Country/TerritoryGermany
CityAachen
Period25/06/1730/06/17

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modelling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'An upper bound on the sum capacity of the downlink multicell processing with finite backhaul capacity'. Together they form a unique fingerprint.

Cite this