An overlap-contention free true-single-phase clock dual-edge-triggered flip-flop

Andrea Bonetti, Adam Teman, Andreas Burg

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Dual-edge-triggered (DET) synchronous operation is a very attractive option for low-power, high-performance designs. Compared to conventional single-edge synchronous systems, DET operation is capable of providing the same throughput at half the clock frequency. This can lead to significant power savings on the clock network that is often one of the major contributors to total system power. However, in order to implement DET operation, special registers need to be introduced that sample data on both clock-edges. These registers are more complex than their single-edge counterparts, and often suffer from a certain amount of clock-overlap between the main clock and the internally generated inverted clock. This overlap can cause contention inside the cell and lead to logic failures, especially when operating at scaled power supplies and under process variations that characterize nanometer technologies. This paper presents a novel, static DET flip-flop (DET-FF) with a true-single-phase clock that completely avoids clock overlap hazards by eliminating the need for an inverted clock edge for functionality. The proposed DET FF was implemented in a standard 40nm CMOS technology, showing full functionality at low-voltage operating points, where conventional DET-FFs fail. Under a near-threshold, 500mV supply voltage, the proposed cell also provides a 35% lower CK-to-Q delay and the lowest power-delay-product compared to all considered DET-FF implementations.

Original languageEnglish
Title of host publication2015 IEEE International Symposium on Circuits and Systems, ISCAS 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1850-1853
Number of pages4
ISBN (Electronic)9781479983919
DOIs
StatePublished - 27 Jul 2015
Externally publishedYes
EventIEEE International Symposium on Circuits and Systems, ISCAS 2015 - Lisbon, Portugal
Duration: 24 May 201527 May 2015

Publication series

NameProceedings - IEEE International Symposium on Circuits and Systems
Volume2015-July

Conference

ConferenceIEEE International Symposium on Circuits and Systems, ISCAS 2015
Country/TerritoryPortugal
CityLisbon
Period24/05/1527/05/15

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'An overlap-contention free true-single-phase clock dual-edge-triggered flip-flop'. Together they form a unique fingerprint.

Cite this