TY - JOUR
T1 - An interaction with PARP-1 and inhibition of parylation contribute to attenuation of DNA damage signaling by the adenovirus E4orf4 protein
AU - Nebenzahl-Sharon, Keren
AU - Sharf, Rakefet
AU - Amer, Jana
AU - Shalata, Hassan
AU - Khoury-Haddad, Hanan
AU - Sohn, Sook Young
AU - Ayoub, Nabieh
AU - Hearing, Patrick
AU - Kleinberger, Tamar
N1 - Publisher Copyright: Copyright © 2019 American Society for Microbiology. All Rights Reserved.
PY - 2019/10
Y1 - 2019/10
N2 - The adenovirus (Ad) E4orf4 protein was reported to contribute to inhibition of ATM- and ATR-regulated DNA damage signaling during Ad infection and following treatment with DNA-damaging drugs. Inhibition of these pathways improved Ad replication, and when expressed alone, E4orf4 sensitized transformed cells to drug-induced toxicity. However, the mechanisms utilized were not identified. Here, we show that E4orf4 associates with the DNA damage sensor poly(ADP-ribose) polymerase 1 (PARP-1) and that the association requires PARP activity. During Ad infection, PARP is activated, but its activity is not required for recruitment of either E4orf4 or PARP-1 to virus replication centers, suggesting that their association occurs following recruitment. Inhibition of PARP-1 assists E4orf4 in reducing DNA damage signaling during infection, and E4orf4 attenuates virus- and DNA damage-induced parylation. Furthermore, E4orf4 reduces PARP-1 phosphorylation on serine residues, which likely contributes to PARP-1 inhibition as phosphorylation of this enzyme was reported to enhance its activity. PARP-1 inhibition is important to Ad infection since treatment with a PARP inhibitor enhances replication efficiency. When E4orf4 is expressed alone, it associates with poly(ADP-ribose) (PAR) chains and is recruited to DNA damage sites in a PARP-1-dependent manner. This recruitment is required for inhibition of drug-induced ATR signaling by E4orf4 and for E4orf4-induced cancer cell death. Thus, the results presented here demonstrate a novel mechanism by which E4orf4 targets and inhibits DNA damage signaling through an association with PARP-1 for the benefit of the virus and impacting E4orf4-induced cancer cell death. IMPORTANCE Replication intermediates and ends of viral DNA genomes can be recognized by the cellular DNA damage response (DDR) network as DNA damage whose repair may lead to inhibition of virus replication. Therefore, many viruses evolved mechanisms to inhibit the DDR network. We have previously shown that the adenovirus (Ad) E4orf4 protein inhibits DDR signaling, but the mechanisms were not identified. Here, we describe an association of E4orf4 with the DNA damage sensor poly(ADP-ribose) polymerase 1 (PARP-1). E4orf4 reduces phosphorylation of this enzyme and inhibits its activity. PARP-1 inhibition assists E4orf4 in reducing Ad-induced DDR signaling and improves the efficiency of virus replication. Furthermore, the ability of E4orf4, when expressed alone, to accumulate at DNA damage sites and to kill cancer cells is attenuated by chemical inhibition of PARP-1. Our results indicate that the E4orf4-PARP-1 interaction has an important role in Ad replication and in promotion of E4orf4-induced cancer-selective cell death.
AB - The adenovirus (Ad) E4orf4 protein was reported to contribute to inhibition of ATM- and ATR-regulated DNA damage signaling during Ad infection and following treatment with DNA-damaging drugs. Inhibition of these pathways improved Ad replication, and when expressed alone, E4orf4 sensitized transformed cells to drug-induced toxicity. However, the mechanisms utilized were not identified. Here, we show that E4orf4 associates with the DNA damage sensor poly(ADP-ribose) polymerase 1 (PARP-1) and that the association requires PARP activity. During Ad infection, PARP is activated, but its activity is not required for recruitment of either E4orf4 or PARP-1 to virus replication centers, suggesting that their association occurs following recruitment. Inhibition of PARP-1 assists E4orf4 in reducing DNA damage signaling during infection, and E4orf4 attenuates virus- and DNA damage-induced parylation. Furthermore, E4orf4 reduces PARP-1 phosphorylation on serine residues, which likely contributes to PARP-1 inhibition as phosphorylation of this enzyme was reported to enhance its activity. PARP-1 inhibition is important to Ad infection since treatment with a PARP inhibitor enhances replication efficiency. When E4orf4 is expressed alone, it associates with poly(ADP-ribose) (PAR) chains and is recruited to DNA damage sites in a PARP-1-dependent manner. This recruitment is required for inhibition of drug-induced ATR signaling by E4orf4 and for E4orf4-induced cancer cell death. Thus, the results presented here demonstrate a novel mechanism by which E4orf4 targets and inhibits DNA damage signaling through an association with PARP-1 for the benefit of the virus and impacting E4orf4-induced cancer cell death. IMPORTANCE Replication intermediates and ends of viral DNA genomes can be recognized by the cellular DNA damage response (DDR) network as DNA damage whose repair may lead to inhibition of virus replication. Therefore, many viruses evolved mechanisms to inhibit the DDR network. We have previously shown that the adenovirus (Ad) E4orf4 protein inhibits DDR signaling, but the mechanisms were not identified. Here, we describe an association of E4orf4 with the DNA damage sensor poly(ADP-ribose) polymerase 1 (PARP-1). E4orf4 reduces phosphorylation of this enzyme and inhibits its activity. PARP-1 inhibition assists E4orf4 in reducing Ad-induced DDR signaling and improves the efficiency of virus replication. Furthermore, the ability of E4orf4, when expressed alone, to accumulate at DNA damage sites and to kill cancer cells is attenuated by chemical inhibition of PARP-1. Our results indicate that the E4orf4-PARP-1 interaction has an important role in Ad replication and in promotion of E4orf4-induced cancer-selective cell death.
KW - Adenoviruses
KW - Cancer cell death
KW - DNA damage response
KW - E4orf4 protein
KW - PARP-1
KW - PP2A
KW - Poly(ADP-ribose) polymerase 1
UR - http://www.scopus.com/inward/record.url?scp=85072154108&partnerID=8YFLogxK
U2 - https://doi.org/10.1128/JVI.02253-18
DO - https://doi.org/10.1128/JVI.02253-18
M3 - مقالة
SN - 0022-538X
VL - 93
JO - Journal of Virology
JF - Journal of Virology
IS - 19
M1 - e02253-18
ER -