An experimental test of the geodesic rule proposition for the noncyclic geometric phase

Zhifan Zhou, Yair Margalit, Samuel Moukouri, Yigal Meir, Ron Folman

Research output: Contribution to journalArticlepeer-review

Abstract

The geometric phase due to the evolution of the Hamiltonian is a central concept in quantum physics and may become advantageous for quantum technology. In noncyclic evolutions, a proposition relates the geometric phase to the area bounded by the phase-space trajectory and the shortest geodesic connecting its end points. The experimental demonstration of this geodesic rule proposition in different systems is of great interest, especially due to the potential use in quantum technology. Here, we report a previously unshown experimental confirmation of the geodesic rule for a noncyclic geometric phase by means of a spatial SU(2) matter-wave interferometer, demonstrating, with high precision, the predicted phase sign change and π jumps. We show the connection between our results and the Pancharatnam phase. Last, we point out that the geodesic rule may be applied to obtain the red shift in general relativity, enabling a new quantum tool to measure gravity.

Original languageAmerican English
Article numbereaay8345
JournalScience Advances
Volume6
Issue number9
DOIs
StatePublished - 1 Jan 2020

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'An experimental test of the geodesic rule proposition for the noncyclic geometric phase'. Together they form a unique fingerprint.

Cite this