An experimental study on spontaneous adiabatic shear band formation in electro-magnetically collapsing cylinders

Z. Lovinger, D. Rittel, Z. Rosenberg

Research output: Contribution to journalArticlepeer-review

Abstract

The formation of shear bands in collapsing thick-walled cylinders (TWC) occurs in a spontaneous manner. The advantage of studying spontaneous, as opposed to forced, shear localization, is that it highlights the inherent susceptibility of the material to adiabatic shear banding without prescribed geometrical constraints. In the case of spontaneous shear localization, the role of microstructure (grain size and grain boundaries) on localization, is still unresolved. Using an electro-magnetic set-up, for the collapse of thick-walled cylinders, we examined the shear band formation and evolution in seven metallic alloys, with a wide range of strength and failure properties. To assess microstructural effects, we conducted systematic tests on copper and Ti6Al4V with different grain sizes. Our results match quite well with previously reported data on much larger specimens, showing the absence of a size effect, on adiabatic shearing. However, the measured shear band spacings, in this study, do not match the predictions of, existing analytical models, indicating that the physics of the problem needs to be better modeled.

Original languageEnglish
Pages (from-to)134-156
Number of pages23
JournalJournal of the Mechanics and Physics of Solids
Volume79
DOIs
StatePublished - Jun 2015

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'An experimental study on spontaneous adiabatic shear band formation in electro-magnetically collapsing cylinders'. Together they form a unique fingerprint.

Cite this