TY - GEN
T1 - An Epipolar Line from a Single Pixel
AU - Halperin, Tavi
AU - Werman, Michael
N1 - Publisher Copyright: © 2018 IEEE.
PY - 2018/5/3
Y1 - 2018/5/3
N2 - Computing the epipolar geometry from feature points between cameras with very different viewpoints is often error prone, as an object's appearance can vary greatly between images. For such cases, it has been shown that using motion extracted from video can achieve much better results than using a static image. This paper extends these earlier works based on the scene dynamics. In this paper we propose a new method to compute the epipolar geometry from a video stream, by exploiting the following observation: For a pixel p in Image A, all pixels corresponding to p in Image B are on the same epipolar line. Equivalently, the image of the line going through camera A's center and p is an epipolar line in B. Therefore, when cameras A and B are synchronized, the momentary images of two objects projecting to the same pixel, p, in camera A at times t1 and t2, lie on an epipolar line in camera B. Based on this observation we achieve fast and precise computation of epipolar lines. Calibrating cameras based on our method of finding epipolar lines is much faster and more robust than previous methods.
AB - Computing the epipolar geometry from feature points between cameras with very different viewpoints is often error prone, as an object's appearance can vary greatly between images. For such cases, it has been shown that using motion extracted from video can achieve much better results than using a static image. This paper extends these earlier works based on the scene dynamics. In this paper we propose a new method to compute the epipolar geometry from a video stream, by exploiting the following observation: For a pixel p in Image A, all pixels corresponding to p in Image B are on the same epipolar line. Equivalently, the image of the line going through camera A's center and p is an epipolar line in B. Therefore, when cameras A and B are synchronized, the momentary images of two objects projecting to the same pixel, p, in camera A at times t1 and t2, lie on an epipolar line in camera B. Based on this observation we achieve fast and precise computation of epipolar lines. Calibrating cameras based on our method of finding epipolar lines is much faster and more robust than previous methods.
UR - http://www.scopus.com/inward/record.url?scp=85050972127&partnerID=8YFLogxK
U2 - 10.1109/WACV.2018.00113
DO - 10.1109/WACV.2018.00113
M3 - منشور من مؤتمر
T3 - Proceedings - 2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018
SP - 983
EP - 991
BT - Proceedings - 2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 18th IEEE Winter Conference on Applications of Computer Vision, WACV 2018
Y2 - 12 March 2018 through 15 March 2018
ER -