Alternative Transcription Initiation and the AUG Context Configuration Control Dual-Organellar Targeting and Functional Competence of Arabidopsis Lon1 Protease

Gerasimos Daras, Stamatis Rigas, Dikran Tsitsekian, Hadas Zur, Tamir Tuller, Polydefkis Hatzopoulos

Research output: Contribution to journalArticlepeer-review

Abstract

Cellular homeostasis relies on components of protein quality control including chaperones and proteases. In bacteria and eukaryotic organelles, Lon proteases play a critical role in removing irreparably damaged proteins and thereby preventing the accumulation of deleterious degradation-resistant aggregates. Gene expression, live-cell imaging, immunobiochemical, and functional complementation approaches provide conclusive evidence for Lon1 dual-targeting to chloroplasts and mitochondria. Dual-organellar deposition of Lon1 isoforms depends on both transcriptional regulation and alternative translation initiation via leaky ribosome scanning from the first AUG sequence context that deviates extensively from the optimum Kozak consensus. Organelle-specific Lon1 targeting results in partial complementation of Arabidopsis lon1-1 mutants, whereas full complementation is solely accomplished by dual-organellar targeting. Both the optimal and non-optimal AUG sequence contexts are functional in yeast and facilitate leaky ribosome scanning complementing the pim1 phenotype when the mitochondrial presequence is used. Bioinformatic search identified a limited number of Arabidopsis genes with Lon1-type dual-targeting sequence organization. Lon4, the paralog of Lon1, has an ambiguous presequence likely evolved from the twin presequences of an ancestral Lon1-like gene, generating a single dual-targeted protein isoform. We postulate that Lon1 and its subfunctional paralog Lon4 evolved complementary subsets of transcriptional and posttranscriptional regulatory components responsive to environmental cues for dual-organellar targeting.

Original languageEnglish
Pages (from-to)989-1005
Number of pages17
JournalMolecular Plant
Volume7
Issue number6
DOIs
StatePublished - Jun 2014

Keywords

  • Lon
  • alternative transcription
  • alternative translation
  • ambiguous and twin presequences
  • chloroplasts
  • mitochondria
  • protein dual-targeting

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Plant Science

Fingerprint

Dive into the research topics of 'Alternative Transcription Initiation and the AUG Context Configuration Control Dual-Organellar Targeting and Functional Competence of Arabidopsis Lon1 Protease'. Together they form a unique fingerprint.

Cite this