All-fiber ultrasound sensor array implemented by swept frequency Interferometry

Haniel Gabai, Idan Steinberg, Lihi Shiloh, Avishay Eyal

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Fiber ultrasound (US) sensing is gaining popularity in recent years. Unique characteristics such as immunity to electromagnetic interference and embedding compatibility makes them advantageous in many applications. Multiplexing of US fiber sensors, however, remains a challenge. Here, a new multiplexing approach is introduced. Based on Swept Frequency Interferometry (SFI), it enables practical multiplexing of tens of US sensors. For demonstration, a 3-sensors setup was excited by ultrasound tone-bursts. While using low driving voltage (2.5-10V vs. 100-400V in similar studies) and not implementing acoustic-impedance optimization or optical-resonance sensitivity enhancement, the sensors detected the excitation with high SNR (25dB).

Original languageEnglish
Title of host publication24th International Conference on Optical Fibre Sensors, OFS 2015
EditorsHypolito Jose Kalinowski, Jose Luis Fabris, Wojtek J. Bock
PublisherSPIE
ISBN (Electronic)9781628418392
DOIs
StatePublished - 2015
Event24th International Conference on Optical Fibre Sensors, OFS 2015 - Curitiba, Brazil
Duration: 28 Sep 20152 Oct 2015

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume9634

Conference

Conference24th International Conference on Optical Fibre Sensors, OFS 2015
Country/TerritoryBrazil
CityCuritiba
Period28/09/152/10/15

Keywords

  • Fiber optic sensors
  • Interferometry
  • Multiplexing
  • Ultrasound

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'All-fiber ultrasound sensor array implemented by swept frequency Interferometry'. Together they form a unique fingerprint.

Cite this