Algorithms and throughput analysis for MDS-coded switches

Rami Cohen, Yuval Cassuto

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Network switches and routers need to serve packet writes and reads at rates that challenge the most advanced memory technologies. As a result, scaling the switching rates is commonly done by parallelizing the packet I/Os using multiple memory units. For improved read rates, packets can be coded with an [n,k] MDS code, thus giving more flexibility at read time to achieve higher utilization of the memory units. In the paper, we study the usage of [n,k] MDS codes in a switching environment. In particular, we study the algorithmic problem of maximizing the instantaneous read rate given a set of packet requests and the current layout of the coded packets in memory. The most interesting results from practical standpoint show how the complexity of reaching optimal read rate depends strongly on the writing policy of the coded packets.

Original languageEnglish
Title of host publicationProceedings - 2015 IEEE International Symposium on Information Theory, ISIT 2015
Pages656-660
Number of pages5
ISBN (Electronic)9781467377041
DOIs
StatePublished - 28 Sep 2015
EventIEEE International Symposium on Information Theory, ISIT 2015 - Hong Kong, Hong Kong
Duration: 14 Jun 201519 Jun 2015

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2015-June

Conference

ConferenceIEEE International Symposium on Information Theory, ISIT 2015
Country/TerritoryHong Kong
CityHong Kong
Period14/06/1519/06/15

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modelling and Simulation
  • Applied Mathematics

Cite this