Abstract
Background: Altered DNA methylation patterns represent an attractive mechanism for understanding the phenotypic changes associated with human aging. Several studies have described global and complex age-related methylation changes, but their structural and functional significance has remained largely unclear. Results: We have used transcriptome sequencing to characterize age-related gene expression changes in the human epidermis. The results revealed a significant set of 75 differentially expressed genes with a strong functional relationship to skin homeostasis. We then used whole-genome bisulfite sequencing to identify age-related methylation changes at single-base resolution. Data analysis revealed no global aberrations, but rather highly localized methylation changes, particularly in promoter and enhancer regions that were associated with altered transcriptional activity. Conclusions: Our results suggest that the core developmental program of human skin is stably maintained through the aging process and that aging is associated with a limited destabilization of the epigenome at gene regulatory elements.
Original language | English |
---|---|
Article number | 36 |
Journal | Epigenetics and Chromatin |
Volume | 6 |
Issue number | 1 |
DOIs | |
State | Published - 2013 |
Keywords
- Aging
- DNA methylation
- Epidermis
- Methylome sequencing
- Transcriptome sequencing
All Science Journal Classification (ASJC) codes
- Molecular Biology
- Genetics