TY - GEN
T1 - Adversarial feedback loop
AU - Shama, Firas
AU - Mechrez, Roey
AU - Shoshan, Alon
AU - Zelnik-Manor, Lihi
N1 - Publisher Copyright: © 2019 IEEE.
PY - 2019/10
Y1 - 2019/10
N2 - Thanks to their remarkable generative capabilities, GANs have gained great popularity, and are used abundantly in state-of-the-art methods and applications. In a GAN based model, a discriminator is trained to learn the real data distribution. To date, it has been used only for training purposes, where it's utilized to train the generator to provide real-looking outputs. In this paper we propose a novel method that makes an explicit use of the discriminator in test-time, in a feedback manner in order to improve the generator results. To the best of our knowledge it is the first time a discriminator is involved in test-time. We claim that the discriminator holds significant information on the real data distribution, that could be useful for test-time as well, a potential that has not been explored before. The approach we propose does not alter the conventional training stage. At test-time, however, it transfers the output from the generator into the discriminator, and uses feedback modules (convolutional blocks) to translate the features of the discriminator layers into corrections to the features of the generator layers, which are used eventually to get a better generator result. Our method can contribute to both conditional and unconditional GANs. As demonstrated by our experiments, it can improve the results of state-of-the-art networks for super-resolution, and image generation.
AB - Thanks to their remarkable generative capabilities, GANs have gained great popularity, and are used abundantly in state-of-the-art methods and applications. In a GAN based model, a discriminator is trained to learn the real data distribution. To date, it has been used only for training purposes, where it's utilized to train the generator to provide real-looking outputs. In this paper we propose a novel method that makes an explicit use of the discriminator in test-time, in a feedback manner in order to improve the generator results. To the best of our knowledge it is the first time a discriminator is involved in test-time. We claim that the discriminator holds significant information on the real data distribution, that could be useful for test-time as well, a potential that has not been explored before. The approach we propose does not alter the conventional training stage. At test-time, however, it transfers the output from the generator into the discriminator, and uses feedback modules (convolutional blocks) to translate the features of the discriminator layers into corrections to the features of the generator layers, which are used eventually to get a better generator result. Our method can contribute to both conditional and unconditional GANs. As demonstrated by our experiments, it can improve the results of state-of-the-art networks for super-resolution, and image generation.
UR - http://www.scopus.com/inward/record.url?scp=85078699921&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2019.00330
DO - 10.1109/ICCV.2019.00330
M3 - منشور من مؤتمر
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 3204
EP - 3213
BT - Proceedings - 2019 International Conference on Computer Vision, ICCV 2019
T2 - 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
Y2 - 27 October 2019 through 2 November 2019
ER -