TY - JOUR
T1 - Active control of acoustic field-of-view in a biosonar system
AU - Yovel, Yossi
AU - Falk, Ben
AU - Moss, Cynthia F.
AU - Ulanovsky, Nachum
N1 - Human Frontiers Science Program [RGP0062/2009-C]; Weizmann InstituteThis work was supported by Human Frontiers Science Program grant # RGP0062/2009-C to NU, and a Weizmann Institute postdoctoral fellowship to YY. The Center for Comparative and Evolutionary Biology of Hearing (R. Dooling, PI) provided travel support for YY. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
PY - 2011/9
Y1 - 2011/9
N2 - Active-sensing systems abound in nature, but little is known about systematic strategies that are used by these systems to scan the environment. Here, we addressed this question by studying echolocating bats, animals that have the ability to point their biosonar beam to a confined region of space. We trained Egyptian fruit bats to land on a target, under conditions of varying levels of environmental complexity, and measured their echolocation and flight behavior. The bats modulated the intensity of their biosonar emissions, and the spatial region they sampled, in a task-dependant manner. We report here that Egyptian fruit bats selectively change the emission intensity and the angle between the beam axes of sequentially emitted clicks, according to the distance to the target, and depending on the level of environmental complexity. In so doing, they effectively adjusted the spatial sector sampled by a pair of clicks-the "field-of-view." We suggest that the exact point within the beam that is directed towards an object (e.g., the beam's peak, maximal slope, etc.) is influenced by three competing task demands: detection, localization, and angular scanning-where the third factor is modulated by field-of-view. Our results suggest that lingual echolocation (based on tongue clicks) is in fact much more sophisticated than previously believed. They also reveal a new parameter under active control in animal sonar-the angle between consecutive beams. Our findings suggest that acoustic scanning of space by mammals is highly flexible and modulated much more selectively than previously recognized.
AB - Active-sensing systems abound in nature, but little is known about systematic strategies that are used by these systems to scan the environment. Here, we addressed this question by studying echolocating bats, animals that have the ability to point their biosonar beam to a confined region of space. We trained Egyptian fruit bats to land on a target, under conditions of varying levels of environmental complexity, and measured their echolocation and flight behavior. The bats modulated the intensity of their biosonar emissions, and the spatial region they sampled, in a task-dependant manner. We report here that Egyptian fruit bats selectively change the emission intensity and the angle between the beam axes of sequentially emitted clicks, according to the distance to the target, and depending on the level of environmental complexity. In so doing, they effectively adjusted the spatial sector sampled by a pair of clicks-the "field-of-view." We suggest that the exact point within the beam that is directed towards an object (e.g., the beam's peak, maximal slope, etc.) is influenced by three competing task demands: detection, localization, and angular scanning-where the third factor is modulated by field-of-view. Our results suggest that lingual echolocation (based on tongue clicks) is in fact much more sophisticated than previously believed. They also reveal a new parameter under active control in animal sonar-the angle between consecutive beams. Our findings suggest that acoustic scanning of space by mammals is highly flexible and modulated much more selectively than previously recognized.
UR - http://www.scopus.com/inward/record.url?scp=80053321767&partnerID=8YFLogxK
U2 - https://doi.org/10.1371/journal.pbio.1001150
DO - https://doi.org/10.1371/journal.pbio.1001150
M3 - مقالة
SN - 1544-9173
VL - 9
JO - PLoS Biology
JF - PLoS Biology
IS - 9
M1 - e1001150
ER -