TY - JOUR
T1 - Actin bundles play a different role in shaping scales compared to bristles in the mosquito Aedes aegypti
AU - Djokic, Sanja
AU - Bakhrat, Anna
AU - Tsurim, Ido
AU - Urakova, Nadya
AU - Rasgon, Jason L.
AU - Abdu, Uri
N1 - Publisher Copyright: © 2020, The Author(s).
PY - 2020/12/1
Y1 - 2020/12/1
N2 - Insect epithelial cells contain cellular extensions such as bristles, hairs, and scales. These cellular extensions are homologous structures that differ in morphology and function. They contain actin bundles that dictate their cellular morphology. While the organization, function, and identity of the major actin-bundling proteins in bristles and hairs are known, this information on scales is unknown. In this study, we characterized the development of scales and the role of actin bundles in the mosquito, Aedes aegypti. We show that scales undergo drastic morphological changes during development, from a cylindrical to flat shape with longer membrane invagination. Scale actin-bundle distribution changes from the symmetrical organization of actin bundles located throughout the bristle membrane to an asymmetrical organization. By chemically inhibiting actin polymerization and by knocking out the forked gene in the mosquito (Ae-Forked; a known actin-bundling protein) by CRISPR-Cas9 gene editing, we showed that actin bundles are required for shaping bristle, hair, and scale morphology. We demonstrated that actin bundles and Ae-Forked are required for bristle elongation, but not for that of scales. In scales, actin bundles are required for width formation. In summary, our results reveal, for the first time, the developmental process of mosquito scale formation and also the role of actin bundles and actin-bundle proteins in scale morphogenesis. Moreover, our results reveal that although scale and bristle are thought to be homologous structures, actin bundles have a differential requirement in shaping mosquito scales compared to bristles.
AB - Insect epithelial cells contain cellular extensions such as bristles, hairs, and scales. These cellular extensions are homologous structures that differ in morphology and function. They contain actin bundles that dictate their cellular morphology. While the organization, function, and identity of the major actin-bundling proteins in bristles and hairs are known, this information on scales is unknown. In this study, we characterized the development of scales and the role of actin bundles in the mosquito, Aedes aegypti. We show that scales undergo drastic morphological changes during development, from a cylindrical to flat shape with longer membrane invagination. Scale actin-bundle distribution changes from the symmetrical organization of actin bundles located throughout the bristle membrane to an asymmetrical organization. By chemically inhibiting actin polymerization and by knocking out the forked gene in the mosquito (Ae-Forked; a known actin-bundling protein) by CRISPR-Cas9 gene editing, we showed that actin bundles are required for shaping bristle, hair, and scale morphology. We demonstrated that actin bundles and Ae-Forked are required for bristle elongation, but not for that of scales. In scales, actin bundles are required for width formation. In summary, our results reveal, for the first time, the developmental process of mosquito scale formation and also the role of actin bundles and actin-bundle proteins in scale morphogenesis. Moreover, our results reveal that although scale and bristle are thought to be homologous structures, actin bundles have a differential requirement in shaping mosquito scales compared to bristles.
UR - http://www.scopus.com/inward/record.url?scp=85090500348&partnerID=8YFLogxK
U2 - https://doi.org/10.1038/s41598-020-71911-0
DO - https://doi.org/10.1038/s41598-020-71911-0
M3 - Article
C2 - 32913276
SN - 2045-2322
VL - 10
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 14885
ER -