TY - GEN
T1 - A Sparsely Distributed Intra-cardial Ultrasonic Array for Real-Time Endocardial Mapping
AU - Baram, Alon
AU - Greenspan, Hayit
AU - Freidman, Zvi
N1 - Publisher Copyright: © 2019, Springer Nature Switzerland AG.
PY - 2019
Y1 - 2019
N2 - Cardiac arrhythmia is the clinical term for the family of diseases wherein the heart beats irregularly. Of these conditions, atrial fibrillation (AF) is one of the most prevalent and afflicts about 25% of the population of European descent over the age of 40. This condition leads to congestive heart failure, increases the risk of stroke five fold, impairs quality of life, causes hundreds of thousands hospitalizations in the US alone and is linked with increased mortality. Electrical pulmonary vein isolation (PVI) from the left atrial (LA) body is performed using ablation for treating AF. This and many other minimally invasive catheterizations, require real-time visualization and tracking of the LA endocardial surface. We propose a novel catheter based system incorporating ultrasound transducers mounted on a set of splines, and an algorithm capable of real time reconstruction of the chamber endocardial boundary, with almost no need for catheter movement or rotation. Unlike traditional ultrasound arrays, this catheter employs a small number of sparsely scattered transducer elements, far less than required by the Nyquist criterion, and a spherical field of view. Our concept had very little theoretical and practical known guarantees. We have developed novel methods to extract the blood pool location in space and validated them against reflecting tissue producing high contrast images of the boundary. We further validated our methods by extensive in-silico simulation studies and hardware phantom experiments. A prototype system is currently being built, following initial animal experimentation that further support the feasibility of this system in-vivo.
AB - Cardiac arrhythmia is the clinical term for the family of diseases wherein the heart beats irregularly. Of these conditions, atrial fibrillation (AF) is one of the most prevalent and afflicts about 25% of the population of European descent over the age of 40. This condition leads to congestive heart failure, increases the risk of stroke five fold, impairs quality of life, causes hundreds of thousands hospitalizations in the US alone and is linked with increased mortality. Electrical pulmonary vein isolation (PVI) from the left atrial (LA) body is performed using ablation for treating AF. This and many other minimally invasive catheterizations, require real-time visualization and tracking of the LA endocardial surface. We propose a novel catheter based system incorporating ultrasound transducers mounted on a set of splines, and an algorithm capable of real time reconstruction of the chamber endocardial boundary, with almost no need for catheter movement or rotation. Unlike traditional ultrasound arrays, this catheter employs a small number of sparsely scattered transducer elements, far less than required by the Nyquist criterion, and a spherical field of view. Our concept had very little theoretical and practical known guarantees. We have developed novel methods to extract the blood pool location in space and validated them against reflecting tissue producing high contrast images of the boundary. We further validated our methods by extensive in-silico simulation studies and hardware phantom experiments. A prototype system is currently being built, following initial animal experimentation that further support the feasibility of this system in-vivo.
UR - http://www.scopus.com/inward/record.url?scp=85075666196&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-32254-0_31
DO - 10.1007/978-3-030-32254-0_31
M3 - منشور من مؤتمر
SN - 9783030322533
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 272
EP - 280
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
A2 - Shen, Dinggang
A2 - Yap, Pew-Thian
A2 - Liu, Tianming
A2 - Peters, Terry M.
A2 - Khan, Ali
A2 - Staib, Lawrence H.
A2 - Essert, Caroline
A2 - Zhou, Sean
PB - Springer Science and Business Media Deutschland GmbH
T2 - 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Y2 - 13 October 2019 through 17 October 2019
ER -