Abstract
Hypothesis: There is a growing interest in designing superhydrophobic materials for many applications including self-clean surfaces, separation systems, and antifouling solutions. Peptides and amino acids offer attractive building blocks for these materials since they are biocompatible and biodegradable and can self-assemble into complex ordered structures. Experiments and Simulations: We designed a self-standing superhydrophobic material through the self-assembly of an individual functionalized aromatic amino acid, Cbz-Phe(4F). The self-assembly of Cbz-Phe(4F) was investigated by experimental and computational methods. Moreover, when drop-casted three times on a solid support, it formed a self-standing superhydrophobic material. The mechanical properties and chemical stability of this self-standing superhydrophobic material were demonstrated. Findings: The designed Cbz-Phe(4F) self-assembled into fibrous structures in solution. Molecular dynamics (MD) simulations revealed that the fibrous backbone of Cbz-Phe(4F) aggregations was stabilized through hydrogen bonds, whereas the isotropic growth of the aggregates was driven by hydrophobic interactions. Importantly, when drop-casted three times on a solid support, it formed a self-standing superhydrophobic material. Moreover, this material had a high mechanical strength, with a Young's modulus of 53 GPa, resistance to enzymatic degradation, and thermal stability up to 200 ℃. This study provides a simple strategy to generate smart and functional materials by the simple self-assembly of functional individual amino acids.
Original language | English |
---|---|
Pages (from-to) | 899-908 |
Number of pages | 10 |
Journal | Journal of Colloid and Interface Science |
Volume | 655 |
DOIs | |
State | Published - Feb 2024 |
Keywords
- Amino acids
- Mechanical properties
- Molecular dynamics simulations
- Self-assembly
- Superhydrophobic material
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Surfaces, Coatings and Films
- Biomaterials
- Colloid and Surface Chemistry