A Reversible Light-Driven Biomimetic K+/Na+-Exchanger Controls Cancer Cell Apoptosis

Yaqi Wu, Cong Li, Yanliang Wu, Jiayun Xu, Zhigang Ni, Ofer Reany, Tengfei Yan, Dingcheng Zhu, Junqiu Liu

Research output: Contribution to journalArticlepeer-review

Abstract

Although natural dual-ion exchangers are indispensable for bio-organic functions, developing their artificial counterparts remains nearly unexplored. Herein, this work proposes a novel light-controlled K+/Na+-transport-exchanger TE12, realizing an unprecedented reversible switch between K+- and Na+-transmembrane transport by changing its transport mechanism (channel and carrier). The conformational transformation of the azobenzene moiety in TE12 essentially induces this. The K+/Na+ selectivity of K+-channel Trans-TE12 is as high as 20.3, making it one of the most selective artificial K+-transporters. Moreover, considering the scarcity of artificial Na+-transporters, the Na+-carrier Cis-TE12 with high Na+/K+ selectivity (9.25) represents a breakthrough. Cis-TE12 significantly triggers cell apoptosis by igniting fascinating “Na+ sparks” first observed on cancer cells treated with synthetic channels, while K+-channel Trans-TE12 exhibits low toxicity. Importantly, TE12 can function as a spatiotemporally controllable ion interference therapy, enabling in situ 365 nm light-triggered and 450 nm light-inhibited cell death. This work realizes sophisticated functions in a simplified structure by the “Less is More” design concept. It opens a shortcut toward the future iterative updating of artificial ion transporters to make them better biological analogs and therapeutic agents.

Original languageEnglish
Article number2400432
JournalAdvanced Functional Materials
Volume34
Issue number29
DOIs
StatePublished - 13 Feb 2024

Keywords

  • K/Na-exchanger
  • high selectivity
  • ion interference therapy
  • ion transporters
  • photo-controlled

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • General Chemistry
  • Condensed Matter Physics
  • General Materials Science
  • Electrochemistry
  • Biomaterials

Fingerprint

Dive into the research topics of 'A Reversible Light-Driven Biomimetic K+/Na+-Exchanger Controls Cancer Cell Apoptosis'. Together they form a unique fingerprint.

Cite this