A quantum linearity test for robustly verifying entanglement

Anand Natarajan, Thomas Vidick

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We introduce a simple two-player test which certifies that the players apply tensor products of Pauli σX and σZ observables on the tensor product of n EPR pairs. The test has constant robustness: any strategy achieving success probability within an additive ϵ of the optimal must be poly(ϵ)-close, in the appropriate distance measure, to the honest n-qubit strategy. The test involves 2n-bit questions and 2-bit answers. The key technical ingredient is a quantum version of the classical linearity test of Blum, Luby, and Rubinfeld. As applications of our result we give (i) the first robust self-test for n EPR pairs; (ii) a quantum multiprover interactive proof system for the local Hamiltonian problem with a constant number of provers and classical questions and answers, and a constant completeness-soundness gap independent of system size; (iii) a robust protocol for verifiable delegated quantum computation with a constant number of quantum polynomial-time provers sharing entanglement.

Original languageEnglish
Title of host publicationSTOC 2017 - Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
EditorsPierre McKenzie, Valerie King, Hamed Hatami
Pages1003-1015
Number of pages13
ISBN (Electronic)9781450345286
DOIs
StatePublished - 19 Jun 2017
Externally publishedYes
Event49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017 - Montreal, Canada
Duration: 19 Jun 201723 Jun 2017

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
VolumePart F128415

Conference

Conference49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017
Country/TerritoryCanada
CityMontreal
Period19/06/1723/06/17

All Science Journal Classification (ASJC) codes

  • Software

Fingerprint

Dive into the research topics of 'A quantum linearity test for robustly verifying entanglement'. Together they form a unique fingerprint.

Cite this