A probabilistic modeling framework for lexical entailment

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Recognizing entailment at the lexical level is an important and commonly-addressed component in textual inference. Yet, this task has been mostly approached by simplified heuristic methods. This paper proposes an initial probabilistic modeling framework for lexical entailment, with suitable EM-based parameter estimation. Our model considers prominent entailment factors, including differences in lexical-resources reliability and the impacts of transitivity and multiple evidence. Evaluations show that the proposed model outperforms most prior systems while pointing at required future improvements.

Original languageEnglish
Title of host publicationACL-HLT 2011 - Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics
Subtitle of host publicationHuman Language Technologies
Pages558-563
Number of pages6
StatePublished - 2011
Event49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, ACL-HLT 2011 - Portland, OR, United States
Duration: 19 Jun 201124 Jun 2011

Publication series

NameACL-HLT 2011 - Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies
Volume2

Conference

Conference49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, ACL-HLT 2011
Country/TerritoryUnited States
CityPortland, OR
Period19/06/1124/06/11

All Science Journal Classification (ASJC) codes

  • Language and Linguistics
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'A probabilistic modeling framework for lexical entailment'. Together they form a unique fingerprint.

Cite this