A parametric amplifier for weak, low-frequency forces

Amit Dolev, Izhak Bucher

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The present work introduces a tunable parametric amplifier (PA) with a hardening, Duffing-type nonlinearity. By introducing a multi-frequency parametric excitation, one is able to achieve both: (i) High amplification of the weak, lowfrequency external excitation (ii) Projection of the low frequency on any natural frequency of the system, thus transforming the low frequency excitation to a frequency band where signal levels are considerably higher. Having developed multiple-scales based expressions for the response of such systems, it is demonstrated that (a) The analytical analysis agrees well with numerically obtained simulations. (b) Both the phase, magnitude and spatial projection of this force on any system's eigenvector can be retrieved by appropriate selection of parameters, with superior signal to noise levels. Closed form analytic expressions for the sensitivity and gain are derived and analyzed. Additionally, some practical applications envisaged for the proposed method will be outlined.

Original languageEnglish
Title of host publication11th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
ISBN (Electronic)9780791857168
DOIs
StatePublished - 2015
EventASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2015 - Boston, United States
Duration: 2 Aug 20155 Aug 2015

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume6

Conference

ConferenceASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2015
Country/TerritoryUnited States
CityBoston
Period2/08/155/08/15

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modelling and Simulation

Fingerprint

Dive into the research topics of 'A parametric amplifier for weak, low-frequency forces'. Together they form a unique fingerprint.

Cite this