TY - GEN
T1 - A parameterized strongly polynomial algorithm for block structured integer programs
AU - Koutecký, Martin
AU - Levin, Asaf
AU - Onn, Shmuel
N1 - Publisher Copyright: © 2018 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. All rights reserved.
PY - 2018/7/1
Y1 - 2018/7/1
N2 - The theory of n-fold integer programming has been recently emerging as an important tool in parameterized complexity. The input to an n-fold integer program (IP) consists of parameter A, dimension n, and numerical data of binary encoding length L. It was known for some time that such programs can be solved in polynomial time using O(ng(A)L) arithmetic operations where g is an exponential function of the parameter. In 2013 it was shown that it can be solved in fixed-parameter tractable time using O(f(A)n3L) arithmetic operations for a single-exponential function f. This, and a faster algorithm for a special case of combinatorial n-fold IP, have led to several very recent breakthroughs in the parameterized complexity of scheduling, stringology, and computational social choice. In 2015 it was shown that it can be solved in strongly polynomial time using O(ng(A)) arithmetic operations. Here we establish a result which subsumes all three of the above results by showing that nfold IP can be solved in strongly polynomial fixed-parameter tractable time using O(f(A)n6 log n) arithmetic operations. In fact, our results are much more general, briefly outlined as follows. There is a strongly polynomial algorithm for integer linear programming (ILP) whenever a so-called Graver-best oracle is realizable for it. Graver-best oracles for the large classes of multi-stage stochastic and tree-fold ILPs can be realized in fixed-parameter tractable time. Together with the previous oracle algorithm, this newly shows two large classes of ILP to be strongly polynomial; in contrast, only few classes of ILP were previously known to be strongly polynomial. We show that ILP is fixed-parameter tractable parameterized by the largest coe cient A∞ and the primal or dual treedepth of A, and that this parameterization cannot be relaxed, signifying substantial progress in understanding the parameterized complexity of ILP.
AB - The theory of n-fold integer programming has been recently emerging as an important tool in parameterized complexity. The input to an n-fold integer program (IP) consists of parameter A, dimension n, and numerical data of binary encoding length L. It was known for some time that such programs can be solved in polynomial time using O(ng(A)L) arithmetic operations where g is an exponential function of the parameter. In 2013 it was shown that it can be solved in fixed-parameter tractable time using O(f(A)n3L) arithmetic operations for a single-exponential function f. This, and a faster algorithm for a special case of combinatorial n-fold IP, have led to several very recent breakthroughs in the parameterized complexity of scheduling, stringology, and computational social choice. In 2015 it was shown that it can be solved in strongly polynomial time using O(ng(A)) arithmetic operations. Here we establish a result which subsumes all three of the above results by showing that nfold IP can be solved in strongly polynomial fixed-parameter tractable time using O(f(A)n6 log n) arithmetic operations. In fact, our results are much more general, briefly outlined as follows. There is a strongly polynomial algorithm for integer linear programming (ILP) whenever a so-called Graver-best oracle is realizable for it. Graver-best oracles for the large classes of multi-stage stochastic and tree-fold ILPs can be realized in fixed-parameter tractable time. Together with the previous oracle algorithm, this newly shows two large classes of ILP to be strongly polynomial; in contrast, only few classes of ILP were previously known to be strongly polynomial. We show that ILP is fixed-parameter tractable parameterized by the largest coe cient A∞ and the primal or dual treedepth of A, and that this parameterization cannot be relaxed, signifying substantial progress in understanding the parameterized complexity of ILP.
KW - Graver basis
KW - Integer programming
KW - N-fold integer programming
KW - Parameterized complexity
UR - http://www.scopus.com/inward/record.url?scp=85049773833&partnerID=8YFLogxK
U2 - https://doi.org/10.4230/LIPIcs.ICALP.2018.85
DO - https://doi.org/10.4230/LIPIcs.ICALP.2018.85
M3 - منشور من مؤتمر
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018
A2 - Kaklamanis, Christos
A2 - Marx, Daniel
A2 - Chatzigiannakis, Ioannis
A2 - Sannella, Donald
T2 - 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018
Y2 - 9 July 2018 through 13 July 2018
ER -