Abstract
A new concept is presented for eliminating off-flavor from cold-water RAS-grown fish, while feeding, and as a part of the normal grow-out period. The technology is based on disconnecting the nitrification biofilter, and instead passing the water through an electrolysis system, which both oxidizes the ammonia and disinfects the water, while also removing the off-flavor compounds from the water, which thereby results in the purging of the fish. The purging period was expected to last up to 2 weeks and the fish are fed throughout it. Laboratory and pilot plant experiments were performed to prove the new concept. Lab experiments included quantification of the removal of MIB and geosmin by electrooxidation and stripping, together and separately, in the presence and absence of organic matter. A pilot plant experiment was performed using Rainbow trout to determine the rate at which the off-flavor compounds were removed from the water and the fish flesh (both skin and muscle were tested). The results show that the treatment process eliminated off-flavors in the water after ∼7 days and that the fish were below taste and odor threshold for geosmin and MIB after a maximum of 11 days. Detachment from the biofilter and the fact that the water was vigorously disinfected during the electrooxidation step guaranteed that no further off-flavor compounds would be generated during the operation. Aquacultural-management assessment indicates that RAS farms can increase both their annual production and their income by more than 10%, by implementing the suggested concept as part of the grow-out period.
Original language | English |
---|---|
Article number | 121015 |
Journal | Water Research |
Volume | 249 |
DOIs | |
State | Published - 1 Feb 2024 |
Keywords
- Electrochemical oxidation
- Geosmin
- MIB
- Off-flavors
- Purging
- RAS
All Science Journal Classification (ASJC) codes
- Water Science and Technology
- Ecological Modelling
- Pollution
- Waste Management and Disposal
- Environmental Engineering
- Civil and Structural Engineering