A native oxide high-κ gate dielectric for two-dimensional electronics

Tianran Li, Teng Tu, Yuanwei Sun, Huixia Fu, Jia Yu, Lei Xing, Ziang Wang, Huimin Wang, Rundong Jia, Jinxiong Wu, Congwei Tan, Yan Liang, Yichi Zhang, Congcong Zhang, Yumin Dai, Chenguang Qiu, Ming Li, Ru Huang, Liying Jiao, Keji LaiBinghai Yan, Peng Gao, Hailin Peng

Research output: Contribution to journalArticlepeer-review

Abstract

Silicon-based transistors are approaching their physical limits and thus new high-mobility semiconductors are sought to replace silicon in the microelectronics industry. Both bulk materials (such as silicon-germanium and III-V semiconductors) and low-dimensional nanomaterials (such as one-dimensional carbon nanotubes and two-dimensional transition metal dichalcogenides) have been explored, but, unlike silicon, which uses silicon dioxide (SiO2) as its gate dielectric, these materials suffer from the absence of a high-quality native oxide as a dielectric counterpart. This can lead to compatibility problems in practical devices. Here, we show that an atomically thin gate dielectric of bismuth selenite (Bi2SeO5) can be conformally formed via layer-by-layer oxidization of an underlying high-mobility two-dimensional semiconductor, Bi2O2Se. Using this native oxide dielectric, high-performance Bi2O2Se field-effect transistors can be created, as well as inverter circuits that exhibit a large voltage gain (as high as 150). The high dielectric constant (similar to 21) of Bi2SeO5 allows its equivalent oxide thickness to be reduced to 0.9 nm while maintaining a gate leakage lower than thermal SiO2. The Bi2SeO5 can also be selectively etched away by a wet chemical method that leaves the mobility of the underlying Bi2O2Se semiconductor almost unchanged.

Original languageEnglish
Pages (from-to)473-478
Number of pages6
JournalNature Electronics
Volume3
Issue number8
DOIs
StatePublished - 1 Aug 2020

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A native oxide high-κ gate dielectric for two-dimensional electronics'. Together they form a unique fingerprint.

Cite this