A modular platform for targeted RNAi therapeutics

Ranit Kedmi, Nuphar Veiga, Srinivas Ramishetti, Meir Goldsmith, Daniel Rosenblum, Niels Dammes, Inbal Hazan-Halevy, Limor Nahary, Shani Leviatan-Ben-Arye, Michael Harlev, Mark Behlke, Itai Benhar, Judy Lieberman, Dan Peer

Research output: Contribution to journalArticlepeer-review

Abstract

Previous studies have identified relevant genes and signalling pathways that are hampered in human disorders as potential candidates for therapeutics. Developing nucleic acid-based tools to manipulate gene expression, such as short interfering RNAs1,2,3 (siRNAs), opens up opportunities for personalized medicine. Yet, although major progress has been made in developing siRNA targeted delivery carriers, mainly by utilizing monoclonal antibodies (mAbs) for targeting4,5,6,7,8, their clinical translation has not occurred. This is in part because of the massive development and production requirements and the high batch-to-batch variability of current technologies, which rely on chemical conjugation. Here we present a self-assembled modular platform that enables the construction of a theoretically unlimited repertoire of siRNA targeted carriers. The self-assembly of the platform is based on a membrane-anchored lipoprotein that is incorporated into siRNA-loaded lipid nanoparticles that interact with the antibody crystallizable fragment (Fc) domain. We show that a simple switch of eight different mAbs redirects the specific uptake of siRNAs by diverse leukocyte subsets in vivo. The therapeutic potential of the platform is demonstrated in an inflammatory bowel disease model by targeting colon macrophages to reduce inflammatory symptoms, and in a Mantle Cell Lymphoma xenograft model by targeting cancer cells to induce cell death and improve survival. This modular delivery platform represents a milestone in the development of precision medicine.
Original languageEnglish
Pages (from-to)214-219
Number of pages6
JournalNature Nanotechnology
Volume13
Issue number3
Early online date29 Jan 2018
DOIs
StatePublished - 1 Mar 2018

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Bioengineering
  • Atomic and Molecular Physics, and Optics
  • Electrical and Electronic Engineering
  • Biomedical Engineering
  • General Materials Science

Fingerprint

Dive into the research topics of 'A modular platform for targeted RNAi therapeutics'. Together they form a unique fingerprint.

Cite this