Abstract
Metamaterial-based designs in ultra-high field (≥7 T) MRI have the promise of increasing the local magnetic resonance imaging (MRI) signal and potentially even the global efficiency of both the radiofrequency (RF) transmit and receive resonators. A recently proposed metamaterial-like structure—comprised of a high-permittivity dielectric material and a set of evenly distributed copper strips—indeed resulted in a local increase in RF transmission. Here, we demonstrate that non-uniform designs of this metamaterial-like structure can be used to boost the ultimate RF field distribution. A non-uniform dielectric distribution can yield longer electric dipoles, thus extending the RF transmit field coverage. A non-uniform distribution of conducting strips enables the tailoring of the local electric field hot spots, where a concave distribution resulted in lower power deposition. Simulations of the brain and calf regions using our new metamaterial-like design, which combines non-uniform distributions of both the dielectric and conducting strips, revealed a 1.4-fold increase in the RF field coverage compared to the uniform distribution, and a 1.5–2-fold increase in the transmit efficiency compared to the standard surface-coil.
| Original language | English |
|---|---|
| Article number | 2250 |
| Number of pages | 13 |
| Journal | Sensors |
| Volume | 24 |
| Issue number | 7 |
| Early online date | 31 Mar 2024 |
| DOIs | |
| State | Published - Apr 2024 |
Keywords
- magnetic resonance imaging
- metamaterial-based design
- non-uniform distribution
- ultra-high field
All Science Journal Classification (ASJC) codes
- Analytical Chemistry
- Information Systems
- Atomic and Molecular Physics, and Optics
- Biochemistry
- Instrumentation
- Electrical and Electronic Engineering