A mathematical model predicting the coculture dynamics of endothelial and mesenchymal stem cells for tissue regeneration

Yao Wang, Tomer Bronshtein, Udi Sarig, Evelyne Bao Vi Nguyen, Freddy Yin Chiang Boey, Subbu S. Venkatraman, Marcelle Machluf

Research output: Contribution to journalArticlepeer-review

Abstract

In most tissue engineering applications, understanding the factors affecting the growth dynamics of coculture systems is crucial for directing the population toward a desirable regenerative process. Yet, no comprehensive analysis method exists to quantify coculture population dynamics, let alone, a unifying model addressing the "environmental" factors influencing cell growth, all together. Here we suggest a modification of the Lotka-Volterra model to analyze the population dynamics of cocultured cells and predict their growth profiles for tissue engineering applications. This model, commonly used to describe the population dynamics of a prey and predator sharing a closed ecological niche, was found to fit our empirical data on cocultures of endothelial cells (ECs) and mesenchymal stem cells (MSCs) that have been widely investigated for their regenerative potential. Applying this model to cocultures of this sort allows us to quantify the effect that culturing conditions have on the way cell growth is affected by the same cells or by the other cells in the coculture. We found that in most cases, EC growth was inhibited by the same cells but promoted by MSCs. The principles resulting from this analysis can be used in various applications to guide the population toward a desired direction while shedding new light on the fundamental interactions between ECs and MSCs. Similar results were also demonstrated on complex substrates made from decellularized porcine cardiac extracellular matrix, where growth occurred only after coculturing ECs and MSCs together. Finally, this unique implementation of the Lotka-Volterra model may also be regarded as a roadmap for using such models with other potentially regenerative cocultures in various applications.

Original languageEnglish
Pages (from-to)1155-1164
Number of pages10
JournalTissue Engineering - Part A.
Volume19
Issue number9-10
DOIs
StatePublished - 1 May 2013

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Biochemistry
  • Biomaterials
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'A mathematical model predicting the coculture dynamics of endothelial and mesenchymal stem cells for tissue regeneration'. Together they form a unique fingerprint.

Cite this