TY - JOUR
T1 - A KLK4 proteinase substrate capture approach to antagonize PAR1
AU - Rabinovitch, Eitan
AU - Mihara, Koishiro
AU - Sananes, Amiram
AU - Zaretsky, Marianna
AU - Heyne, Michael
AU - Shifman, Julia
AU - Aharoni, Amir
AU - Hollenberg, Morley D.
AU - Papo, Niv
N1 - Publisher Copyright: © 2021, The Author(s).
PY - 2021/12/1
Y1 - 2021/12/1
N2 - Proteinase-activated receptor-1 (PAR1), triggered by thrombin and other serine proteinases such as tissue kallikrein-4 (KLK4), is a key driver of inflammation, tumor invasiveness and tumor metastasis. The PAR1 transmembrane G-protein-coupled receptor therefore represents an attractive target for therapeutic inhibitors. We thus used a computational design to develop a new PAR1 antagonist, namely, a catalytically inactive human KLK4 that acts as a proteinase substrate-capture reagent, preventing receptor cleavage (and hence activation) by binding to and occluding the extracellular R41-S42 canonical PAR1 proteolytic activation site. On the basis of in silico site-saturation mutagenesis, we then generated KLK4S207A,L185D, a first-of-a-kind ‘decoy’ PAR1 inhibitor, by mutating the S207A and L185D residues in wild-type KLK4, which strongly binds to PAR1. KLK4S207A,L185D markedly inhibited PAR1 cleavage, and PAR1-mediated MAPK/ERK activation as well as the migration and invasiveness of melanoma cells. This ‘substrate-capturing’ KLK4 variant, engineered to bind to PAR1, illustrates proof of principle for the utility of a KLK4 ‘proteinase substrate capture’ approach to regulate proteinase-mediated PAR1 signaling.
AB - Proteinase-activated receptor-1 (PAR1), triggered by thrombin and other serine proteinases such as tissue kallikrein-4 (KLK4), is a key driver of inflammation, tumor invasiveness and tumor metastasis. The PAR1 transmembrane G-protein-coupled receptor therefore represents an attractive target for therapeutic inhibitors. We thus used a computational design to develop a new PAR1 antagonist, namely, a catalytically inactive human KLK4 that acts as a proteinase substrate-capture reagent, preventing receptor cleavage (and hence activation) by binding to and occluding the extracellular R41-S42 canonical PAR1 proteolytic activation site. On the basis of in silico site-saturation mutagenesis, we then generated KLK4S207A,L185D, a first-of-a-kind ‘decoy’ PAR1 inhibitor, by mutating the S207A and L185D residues in wild-type KLK4, which strongly binds to PAR1. KLK4S207A,L185D markedly inhibited PAR1 cleavage, and PAR1-mediated MAPK/ERK activation as well as the migration and invasiveness of melanoma cells. This ‘substrate-capturing’ KLK4 variant, engineered to bind to PAR1, illustrates proof of principle for the utility of a KLK4 ‘proteinase substrate capture’ approach to regulate proteinase-mediated PAR1 signaling.
UR - http://www.scopus.com/inward/record.url?scp=85112046792&partnerID=8YFLogxK
U2 - https://doi.org/10.1038/s41598-021-95666-4
DO - https://doi.org/10.1038/s41598-021-95666-4
M3 - Article
C2 - 34373558
SN - 2045-2322
VL - 11
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 16170
ER -