A Graph-Based Approach for Category-Agnostic Pose Estimation

Or Hirschorn, Shai Avidan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Traditional 2D pose estimation models are limited by their category-specific design, making them suitable only for predefined object categories. This restriction becomes particularly challenging when dealing with novel objects due to the lack of relevant training data. To address this limitation, category-agnostic pose estimation (CAPE) was introduced. CAPE aims to enable keypoint localization for arbitrary object categories using a few-shot single model, requiring minimal support images with annotated keypoints. We present a significant departure from conventional CAPE techniques, which treat keypoints as isolated entities, by treating the input pose data as a graph. We leverage the inherent geometrical relations between keypoints through a graph-based network to break symmetry, preserve structure, and better handle occlusions. We validate our approach on the MP-100 benchmark, a comprehensive dataset comprising over 20,000 images spanning over 100 categories. Our solution boosts performance by 0.98% under a 1-shot setting, achieving a new state-of-the-art for CAPE. Additionally, we enhance the dataset with skeleton annotations. Our code and data are publicly available.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2024 - 18th European Conference, Proceedings
EditorsAleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol
PublisherSpringer Science and Business Media Deutschland GmbH
Pages469-485
Number of pages17
ISBN (Print)9783031730351
DOIs
StatePublished - 2025
Event18th European Conference on Computer Vision, ECCV 2024 - Milan, Italy
Duration: 29 Sep 20244 Oct 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15121 LNCS

Conference

Conference18th European Conference on Computer Vision, ECCV 2024
Country/TerritoryItaly
CityMilan
Period29/09/244/10/24

Keywords

  • Class-Agnostic Pose Estimation
  • Few-Shot Learning

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Cite this