TY - JOUR
T1 - A ‘darboux theorem’ for shifted symplectic structures on derived Artin stacks, with applications
AU - Ben-Bassat, Oren
AU - Brav, Christopher
AU - Bussi, Vittoria
AU - Joyce, Dominic
N1 - Publisher Copyright: © 2015, Mathematical Sciences Publishers. All rights reserved.
PY - 2015/5/21
Y1 - 2015/5/21
N2 - This is the fifth in a series of papers on the ‘k –shifted symplectic derived algebraic geometry’ of Pantev, Toën, Vaquié and Vezzosi. We extend our earlier results from (derived) schemes to (derived) Artin stacks. We prove four main results: (a) If (X, ωX) is a k –shifted symplectic derived Artin stack for k < 0, then near each x ∈ X we can find a ‘minimal’ smooth atlas φ: U → X, such that (U, φ*(ωX)) may be written explicitly in coordinates in a standard ‘Darboux form’. (b) If (X, ωX) is a (-1)-shifted symplectic derived Artin stack and X = t0(X) the classical Artin stack, then X extends to a ‘d–critical stack’ (X, s), as by Joyce. (c) If (X, s) is an oriented d–critical stack, we define a natural perverse sheaf P• X,s on X, such that whenever T is a scheme and t W T → X is smooth of relative dimension n, T is locally modelled on a critical locus Crit(f : U → A1), and t*(P• X,s)[n] is modelled on the perverse sheaf of vanishing cycles PV • U,f of f. (d) If (X, s) is a finite-type oriented d–critical stack, we can define a natural motive MFX,s in a ring of motives Mst,μ X on X , such that if T is a scheme and t W T → X is smooth of dimension n, then T is modelled on a critical locus Crit(f : U → 𝔸1), and 𝕃-n/2 ⊙ t*(MFX,s) is modelled on the motivic vanishing cycle MFmot,Φ U,f of f. Our results have applications to categorified and motivic extensions of Donaldson– Thomas theory of Calabi–Yau 3–folds.
AB - This is the fifth in a series of papers on the ‘k –shifted symplectic derived algebraic geometry’ of Pantev, Toën, Vaquié and Vezzosi. We extend our earlier results from (derived) schemes to (derived) Artin stacks. We prove four main results: (a) If (X, ωX) is a k –shifted symplectic derived Artin stack for k < 0, then near each x ∈ X we can find a ‘minimal’ smooth atlas φ: U → X, such that (U, φ*(ωX)) may be written explicitly in coordinates in a standard ‘Darboux form’. (b) If (X, ωX) is a (-1)-shifted symplectic derived Artin stack and X = t0(X) the classical Artin stack, then X extends to a ‘d–critical stack’ (X, s), as by Joyce. (c) If (X, s) is an oriented d–critical stack, we define a natural perverse sheaf P• X,s on X, such that whenever T is a scheme and t W T → X is smooth of relative dimension n, T is locally modelled on a critical locus Crit(f : U → A1), and t*(P• X,s)[n] is modelled on the perverse sheaf of vanishing cycles PV • U,f of f. (d) If (X, s) is a finite-type oriented d–critical stack, we can define a natural motive MFX,s in a ring of motives Mst,μ X on X , such that if T is a scheme and t W T → X is smooth of dimension n, then T is modelled on a critical locus Crit(f : U → 𝔸1), and 𝕃-n/2 ⊙ t*(MFX,s) is modelled on the motivic vanishing cycle MFmot,Φ U,f of f. Our results have applications to categorified and motivic extensions of Donaldson– Thomas theory of Calabi–Yau 3–folds.
UR - http://www.scopus.com/inward/record.url?scp=84994024148&partnerID=8YFLogxK
U2 - https://doi.org/10.2140/gt.2015.19.1287
DO - https://doi.org/10.2140/gt.2015.19.1287
M3 - Article
SN - 1465-3060
VL - 19
SP - 1287
EP - 1359
JO - Geometry and Topology
JF - Geometry and Topology
IS - 3
ER -