TY - JOUR
T1 - A continuous time random walk (CTRW) integro-differential equation with chemical interaction
AU - Ben-Zvi, Rami
AU - Nissan, Alon
AU - Scher, Harvey
AU - Berkowitz, Brian
N1 - B.B. gratefully acknowledges support by the Israel Science Foundation (grant 485/16). B.B. holds the Sam Zuckerberg Professorial Chair in Hydrology. Author contribution statement RBZ developed the FEM solution. AN provided the particle tracking simulation results. HS and BB conceived and developed the governing integro-differential equations for reactive transport. All authors contributed to the analysis and interpretation of results, and to the writing of the paper.
PY - 2018/1/17
Y1 - 2018/1/17
N2 - A nonlocal-in-time integro-differential equation is introduced that accounts for close coupling between transport and chemical reaction terms. The structure of the equation contains these terms in a single convolution with a memory function M (t), which includes the source of non-Fickian (anomalous) behavior, within the framework of a continuous time random walk (CTRW). The interaction is non-linear and second-order, relevant for a bimolecular reaction A + B → C. The interaction term ΓP A (s, t) P B (s, t) is symmetric in the concentrations of A and B (i.e. P A and P B); thus the source terms in the equations for A, B and C are similar, but with a change in sign for that of C. Here, the chemical rate coefficient, Γ, is constant. The fully coupled equations are solved numerically using a finite element method (FEM) with a judicious representation of M (t) that eschews the need for the entire time history, instead using only values at the former time step. To begin to validate the equations, the FEM solution is compared, in lieu of experimental data, to a particle tracking method (CTRW-PT); the results from the two approaches, particularly for the C profiles, are in agreement. The FEM solution, for a range of initial and boundary conditions, can provide a good model for reactive transport in disordered media.
AB - A nonlocal-in-time integro-differential equation is introduced that accounts for close coupling between transport and chemical reaction terms. The structure of the equation contains these terms in a single convolution with a memory function M (t), which includes the source of non-Fickian (anomalous) behavior, within the framework of a continuous time random walk (CTRW). The interaction is non-linear and second-order, relevant for a bimolecular reaction A + B → C. The interaction term ΓP A (s, t) P B (s, t) is symmetric in the concentrations of A and B (i.e. P A and P B); thus the source terms in the equations for A, B and C are similar, but with a change in sign for that of C. Here, the chemical rate coefficient, Γ, is constant. The fully coupled equations are solved numerically using a finite element method (FEM) with a judicious representation of M (t) that eschews the need for the entire time history, instead using only values at the former time step. To begin to validate the equations, the FEM solution is compared, in lieu of experimental data, to a particle tracking method (CTRW-PT); the results from the two approaches, particularly for the C profiles, are in agreement. The FEM solution, for a range of initial and boundary conditions, can provide a good model for reactive transport in disordered media.
U2 - https://doi.org/10.1140/epjb/e2017-80417-8
DO - https://doi.org/10.1140/epjb/e2017-80417-8
M3 - مقالة
SN - 1434-6028
VL - 91
JO - European Physical Journal B
JF - European Physical Journal B
IS - 1
M1 - 15
ER -