A (1 + ln 2)-approximation algorithm for minimum-cost 2-edge-connectivity augmentation of trees with constant radius

Nachshon Cohen, Zeev Nutov

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We consider the Tree Augmentation problem: given a graph G = (V,E) with edge-costs and a tree T on V disjoint to E, find a minimum-cost edge-subset F ⊆ E such that T ∪ F is 2-edge-connected. Tree Augmentation is equivalent to the problem of finding a minimum-cost edge-cover F ⊆ E of a laminar set-family. The best known approximation ratio for Tree Augmentation is 2, even for trees of radius 2. As laminar families play an important role in network design problems, obtaining a better ratio is a major open problem in network design. We give a (1 + ln 2)-approximation algorithm for trees of constant radius. Our algorithm is based on a new decomposition of problem solutions, which may be of independent interest.

Original languageEnglish
Title of host publicationApproximation, Randomization, and Combinatorial Optimization
Subtitle of host publicationAlgorithms and Techniques - 14th International Workshop, APPROX 2011 and 15th International Workshop, RANDOM 2011, Proceedings
Pages147-157
Number of pages11
DOIs
StatePublished - 2011
Event14th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2011 and the 15th International Workshop on Randomization and Computation, RANDOM 2011 - Princeton, NJ, United States
Duration: 17 Aug 201119 Aug 2011

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume6845 LNCS

Conference

Conference14th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2011 and the 15th International Workshop on Randomization and Computation, RANDOM 2011
Country/TerritoryUnited States
CityPrinceton, NJ
Period17/08/1119/08/11

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'A (1 + ln 2)-approximation algorithm for minimum-cost 2-edge-connectivity augmentation of trees with constant radius'. Together they form a unique fingerprint.

Cite this