Õptimal Dual Vertex Failure Connectivity Labels

Merav Parter, Asaf Petruschka

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this paper we present succinct labeling schemes for supporting connectivity queries under vertex faults. For a given n-vertex graph G, an f-VFT (resp., EFT) connectivity labeling scheme is a distributed data structure that assigns each of the graph edges and vertices a short label, such that given the labels of a vertex pair u and v, and the labels of at most f failing vertices (resp., edges) F, one can determine if u and v are connected in G \ F. The primary complexity measure is the length of the individual labels. Since their introduction by [Courcelle, Twigg, STACS'07], FT labeling schemes have been devised only for a limited collection of graph families. A recent work [Dory and Parter, PODC 2021] provided EFT labeling schemes for general graphs under edge failures, leaving the vertex failure case fairly open. We provide the first sublinear f-VFT labeling schemes for f ≥ 2 for any n-vertex graph. Our key result is 2-VFT connectivity labels with O(log3 n) bits. Our constructions are based on analyzing the structure of dual failure replacement paths on top of the well-known heavy-light tree decomposition technique of [Sleator and Tarjan, STOC 1981]. We also provide f-VFT labels with sub-linear length (in |V|) for any f = o(log log n), that are based on a reduction to the existing EFT labels.

Original languageEnglish
Title of host publication36th International Symposium on Distributed Computing, DISC 2022
EditorsChristian Scheideler
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959772556
DOIs
StatePublished - 1 Oct 2022
Event36th International Symposium on Distributed Computing, DISC 2022 - Augusta, United States
Duration: 25 Oct 202227 Oct 2022

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume246
ISSN (Print)1868-8969

Conference

Conference36th International Symposium on Distributed Computing, DISC 2022
Country/TerritoryUnited States
CityAugusta
Period25/10/2227/10/22

All Science Journal Classification (ASJC) codes

  • Software

Fingerprint

Dive into the research topics of 'Õptimal Dual Vertex Failure Connectivity Labels'. Together they form a unique fingerprint.

Cite this