Splitting the variance of statistical learning performance: A parametric investigation of exposure duration and transitional probabilities

Louisa Bogaerts, Noam Siegelman, Ram Frost

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

What determines individuals’ efficacy in detecting regularities in visual statistical learning? Our theoretical starting point assumes that the variance in performance of statistical learning (SL) can be split into the variance related to efficiency in encoding representations within a modality and the variance related to the relative computational efficiency of detecting the distributional properties of the encoded representations. Using a novel methodology, we dissociated encoding from higher-order learning factors, by independently manipulating exposure duration and transitional probabilities in a stream of visual shapes. Our results show that the encoding of shapes and the retrieving of their transitional probabilities are not independent and additive processes, but interact to jointly determine SL performance. The theoretical implications of these findings for a mechanistic explanation of SL are discussed.

اللغة الأصليةإنجليزيّة أمريكيّة
الصفحات (من إلى)1250-1256
عدد الصفحات7
دوريةPsychonomic Bulletin and Review
مستوى الصوت23
رقم الإصدار4
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1 أغسطس 2016

All Science Journal Classification (ASJC) codes

  • !!Experimental and Cognitive Psychology
  • !!Developmental and Educational Psychology
  • !!Arts and Humanities (miscellaneous)

بصمة

أدرس بدقة موضوعات البحث “Splitting the variance of statistical learning performance: A parametric investigation of exposure duration and transitional probabilities'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا