Spectral Radon-Fourier Transform for Automotive Radar Applications

Oren Longman, Igal Bilik

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء


Fast Fourier transform (FFT) is one of the fundamental signal processing algorithms widely used in radar applications. The Radon-Fourier transform (RFT) can be seen as an FFT generalization that can overcome some of its limitations. This work derives three spectral RFT (SRFT) based approaches to address major challenges of the multiple-input multiple-output automotive radars. First, two SRFT-based approaches are derived to increase maximal target detection range by mitigation of target migration in range and direction of arrival, jointly, and by multidwell integration processing, which increases the radar coherent integration time without compromising its detection update rate. Next, SRFT-based approach is proposed to address the cluster-to-track association problem that arises in multiple distributed target tracking scenarios that characterize automotive radar operation in dense urban environments.

اللغة الأصليةإنجليزيّة أمريكيّة
رقم المقال9261109
الصفحات (من إلى)1046-1056
عدد الصفحات11
دوريةIEEE Transactions on Aerospace and Electronic Systems
مستوى الصوت57
رقم الإصدار2
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1 أبريل 2021
منشور خارجيًانعم

All Science Journal Classification (ASJC) codes

  • !!Aerospace Engineering
  • !!Electrical and Electronic Engineering


أدرس بدقة موضوعات البحث “Spectral Radon-Fourier Transform for Automotive Radar Applications'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا