Resolving sets and integer programs for recommender systems

Alain Hertz, Tsvi Kuflik, Noa Tuval

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

Recommender systems make use of different sources of information for providing users with recommendations of items. Such systems are often based on either collaborative filtering methods which make automatic predictions about the interests of a user, using preferences of similar users, or content based filtering that matches the user’s personal preferences with item characteristics. We adopt the content-based approach and propose to use the concept of resolving set that allows to determine the preferences of the users with a very limited number of ratings. We also show how to make recommendations when user ratings are imprecise or inconsistent, and we indicate how to take into account situations where users possibly don’t care about the attribute values of some items. All recommendations are obtained in a few seconds by solving integer programs.

اللغة الأصليةإنجليزيّة أمريكيّة
الصفحات (من إلى)153-178
عدد الصفحات26
دوريةJournal of Global Optimization
مستوى الصوت81
رقم الإصدار1
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - سبتمبر 2021

All Science Journal Classification (ASJC) codes

  • !!Computer Science Applications
  • !!Control and Optimization
  • !!Management Science and Operations Research
  • !!Applied Mathematics

بصمة

أدرس بدقة موضوعات البحث “Resolving sets and integer programs for recommender systems'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا