Polynomial time algorithms for inclusion and equivalence of deterministic omega acceptors

Dana Angluin, Dana Fisman

نتاج البحث: ورقة عمل / طبعة اوليةنسخة اولية

ملخص

The class of omega languages recognized by deterministic parity acceptors (DPAs) or deterministic Muller acceptors (DMAs) is exactly the regular omega languages. The inclusion problem is the following: given two acceptors A1 and A2, determine whether the language recognized by A1 is a subset of the language recognized by A2, and if not, return an ultimately periodic omega word accepted by A1 but not A2. We describe polynomial time algorithms to solve this problem for two DPAs and for two DMAs. Corollaries include polynomial time algorithms to solve the equivalence problem for DPAs and DMAs, and also the inclusion and equivalence problems for deterministic Buechi and coBuechi acceptors.
اللغة الأصليةإنجليزيّة أمريكيّة
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 9 مايو 2020

بصمة

أدرس بدقة موضوعات البحث “Polynomial time algorithms for inclusion and equivalence of deterministic omega acceptors'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا