On polynomial secret sharing schemes

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء


Nearly all secret sharing schemes studied so far are linear or multi-linear schemes. Although these schemes allow to implement any monotone access structure, the share complexity, SC, may be suboptimal – there are access structures for which the gap between the best known lower bounds and best known multi-linear schemes is exponential. There is growing evidence in the literature, that non-linear schemes can improve share complexity for some access structures, with the work of Beimel and Ishai (CCC’01) being among the first to demonstrate it. This motivates further study of non linear schemes. We initiate a systematic study of polynomial secret sharing schemes (PSSS), where shares are (multi-variate) polynomials of secret and randomness vectors ~s,~r respectively over some finite field Fq. Our main hope is that the algebraic structure of polynomials would help obtain better lower bounds than those known for the general secret sharing. Some of the initial results we prove in this work are as follows.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيف1st Conference on Information-Theoretic Cryptography, ITC 2020
المحررونYael Tauman Kalai, Adam D. Smith, Daniel Wichs
ناشرSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
رقم المعيار الدولي للكتب (الإلكتروني)9783959771511
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1 يونيو 2020
الحدث1st Conference on Information-Theoretic Cryptography, ITC 2020 - Virtual, Boston, الولايات المتّحدة
المدة: ١٧ يونيو ٢٠٢٠١٩ يونيو ٢٠٢٠

سلسلة المنشورات

الاسمLeibniz International Proceedings in Informatics, LIPIcs
مستوى الصوت163


!!Conference1st Conference on Information-Theoretic Cryptography, ITC 2020
الدولة/الإقليمالولايات المتّحدة
المدينةVirtual, Boston

All Science Journal Classification (ASJC) codes

  • !!Software


أدرس بدقة موضوعات البحث “On polynomial secret sharing schemes'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا