Nuclear quantum effects in chemical reactions via higher-order path-integral calculations

Hamutal Engel, Reuven Eitan, Asaf Azuri, Dan Thomas Major

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء


A practical approach to treat nuclear quantum mechanical effects in simulations of condensed phases, such as enzymes, is via Feynman path integral (PI) formulations. Typically, the standard primitive approximation (PA) is employed in enzymatic PI simulations. Nonetheless, these PI simulations are computationally demanding due to the large number of beads required to obtain converged results. The efficiency of PI simulations may be greatly improved if higher-order factorizations of the density matrix operator are employed. Herein, we compare the results of model calculations obtained employing the standard PA, the improved operator of Takahashi and Imada (TI), and a gradient-based forward corrector algorithm due to Chin (CH). The quantum transmission coefficient is computed for the Eckart potential while the partition functions and rate constant are computed for the H2 + H hydrogen transfer reaction. These potentials are simple models for chemical reactions. The study of the different factorization methods reveals that in most cases the higher-order action converges faster than the PA and TI approaches, at a moderate computational cost.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)95-101
عدد الصفحات7
دوريةChemical Physics
مستوى الصوت450-451
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 15 أبريل 2015

All Science Journal Classification (ASJC) codes

  • !!General Physics and Astronomy
  • !!Physical and Theoretical Chemistry


أدرس بدقة موضوعات البحث “Nuclear quantum effects in chemical reactions via higher-order path-integral calculations'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا