Modular ADMM-Based Strategies for Optimized Compression, Restoration, and Distributed Representations of Visual Data

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرفصلمراجعة النظراء

ملخص

Iterative techniques are a well-established tool in modern imaging sciences, allowing to address complex optimization problems via sequences of simpler computational processes. This approach has been significantly expanded in recent years by iterative designs where explicit solutions of optimization subproblems were replaced by black-box applications of ready-to-use modules for denoising or compression. These modular designs are conceptually simple, yet often achieve impressive results. In this chapter, we overview the concept of modular optimization for imaging problems by focusing on structures induced by the alternating direction method of multipliers (ADMM) technique and their applications to intricate restoration and compression problems. We start by emphasizing general guidelines independent of the module type used and only then derive ADMM-based structures relying on denoising and compression methods. The wide perspective on the topic should motivate extensions of the types of problems addressed and the kinds of black boxes utilized by the modular optimization. As an example for a promising research avenue, we present our recent framework employing black-box modules for distributed representations of visual data.

اللغة الأصليةإنجليزيّة أمريكيّة
عنوان منشور المضيفHandbook of Mathematical Models and Algorithms in Computer Vision and Imaging
العنوان الفرعي لمنشور المضيفMathematical Imaging and Vision
الصفحات175-207
عدد الصفحات33
رقم المعيار الدولي للكتب (الإلكتروني)9783030986612
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1 يناير 2023

All Science Journal Classification (ASJC) codes

  • !!Mathematics (all)
  • !!Computer Science (all)

بصمة

أدرس بدقة موضوعات البحث “Modular ADMM-Based Strategies for Optimized Compression, Restoration, and Distributed Representations of Visual Data'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا