Marginally stable equilibria in critical ecosystems

Giulio Biroli, Guy Bunin, Chiara Cammarota

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

In this work we study the stability of the equilibria reached by ecosystems formed by a large number of species. The model we focus on are Lotka-Volterra equations with symmetric random interactions. Our theoretical analysis, confirmed by our numerical studies, shows that for strong and heterogeneous interactions the system displays multiple equilibria which are all marginally stable. This property allows us to obtain general identities between diversity and single species responses, which generalize and saturate May's stability bound. By connecting the model to systems studied in condensed matter physics, we show that the multiple equilibria regime is analogous to a critical spin-glass phase. This relation suggests new experimental ways to probe marginal stability.

اللغة الأصليةالإنجليزيّة
رقم المقال083051
دوريةNew Journal of Physics
مستوى الصوت20
رقم الإصدار8
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - أغسطس 2018

All Science Journal Classification (ASJC) codes

  • !!General Physics and Astronomy

بصمة

أدرس بدقة موضوعات البحث “Marginally stable equilibria in critical ecosystems'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا