Lines avoiding balls in three dimensions revisited

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء


Let B be a collection of n arbitrary balls in ℝ 3. We establish an almost-tight upper bound of O(n 3+ε), for any ε>0, on the complexity of the space F(B) of all the lines that avoid all the members of B. In particular, we prove that the balls of B admit O(n 3+ε) free isolated tangents, for any ε>0. This generalizes the result of Agarwal et al. (Discrete Comput. Geom. 34:231-250, 2005), who established this bound only for congruent balls, and solves an open problem posed in that paper. Our bound almost meets the recent lower bound of Ω(n 3) of Glisse and Lazard (Proc. 26th Annu. Symp. Comput. Geom., pp. 48-57, 2010). Our approach is constructive and yields an algorithm that computes the discrete representation of the boundary of F(B) in O(n 3+ε) time, for any ε>0.

اللغة الأصليةإنجليزيّة أمريكيّة
الصفحات (من إلى)65-93
عدد الصفحات29
دوريةDiscrete and Computational Geometry
مستوى الصوت48
رقم الإصدار1
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1 يوليو 2012
منشور خارجيًانعم

All Science Journal Classification (ASJC) codes

  • !!Theoretical Computer Science
  • !!Geometry and Topology
  • !!Discrete Mathematics and Combinatorics
  • !!Computational Theory and Mathematics


أدرس بدقة موضوعات البحث “Lines avoiding balls in three dimensions revisited'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا