Large Deviations Behavior of the Logarithmic Error Probability of Random Codes

Ran Tamir, Neri Merhav, Nir Weinberger, Albert Guillén I Fàbregas

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

This work studies the deviations of the error exponent of the constant composition code ensemble around its expectation, known as the error exponent of the typical random code (TRC). In particular, it is shown that the probability of randomly drawing a codebook whose error exponent is smaller than the TRC exponent is exponentially small; upper and lower bounds for this exponent are given, which coincide in some cases. In addition, the probability of randomly drawing a codebook whose error exponent is larger than the TRC exponent is shown to be double-exponentially small; upper and lower bounds to the double-exponential exponent are given. The results suggest that codebooks whose error exponent is larger than the error exponent of the TRC are extremely rare. The key ingredient in the proofs is a new large deviations result of type class enumerators with dependent variables.

اللغة الأصليةالإنجليزيّة
رقم المقال9095265
الصفحات (من إلى)6635-6659
عدد الصفحات25
دوريةIEEE Transactions on Information Theory
مستوى الصوت66
رقم الإصدار11
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - نوفمبر 2020

All Science Journal Classification (ASJC) codes

  • !!Information Systems
  • !!Computer Science Applications
  • !!Library and Information Sciences

بصمة

أدرس بدقة موضوعات البحث “Large Deviations Behavior of the Logarithmic Error Probability of Random Codes'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا