k-Nearest neighbors: From global to local

Oren Anava, Kfir Y. Levy

نتاج البحث: نشر في مجلةمقالة من مؤنمرمراجعة النظراء


The weighted k-nearest neighbors algorithm is one of the most fundamental non-parametric methods in pattern recognition and machine learning. The question of setting the optimal number of neighbors as well as the optimal weights has received much attention throughout the years, nevertheless this problem seems to have remained unsettled. In this paper we offer a simple approach to locally weighted regression/classification, where we make the bias-variance tradeoff explicit. Our formulation enables us to phrase a notion of optimal weights, and to efficiently find these weights as well as the optimal number of neighbors efficiently and adaptively, for each data point whose value we wish to estimate. The applicability of our approach is demonstrated on several datasets, showing superior performance over standard locally weighted methods.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)4923-4931
عدد الصفحات9
دوريةAdvances in Neural Information Processing Systems
حالة النشرنُشِر - 2016
منشور خارجيًانعم
الحدث30th Annual Conference on Neural Information Processing Systems, NIPS 2016 - Barcelona, أسبانيا
المدة: ٥ ديسمبر ٢٠١٦١٠ ديسمبر ٢٠١٦

All Science Journal Classification (ASJC) codes

  • !!Computer Networks and Communications
  • !!Information Systems
  • !!Signal Processing


أدرس بدقة موضوعات البحث “k-Nearest neighbors: From global to local'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا