Isotopy-invariant topological measures on closed orientable surfaces of higher genus

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

Given a closed orientable surface Σ of genus at least two, we establish an affine isomorphism between the convex compact set of isotopy-invariant topological measures on Σ and the convex compact set of additive functions on the set of isotopy classes of certain subsurfaces of Σ. We then construct such additive functions, and thus isotopy-invariant topological measures, from probability measures on Σ together with some additional data. The map associating topological measures to probability measures is affine and continuous. Certain Dirac measures map to simple topological measures, while the topological measures due to Py and Rosenberg arise from the normalized Euler characteristic.

اللغة الأصليةإنجليزيّة أمريكيّة
الصفحات (من إلى)133-143
عدد الصفحات11
دوريةMathematische Zeitschrift
مستوى الصوت270
رقم الإصدار1-2
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - فبراير 2012
منشور خارجيًانعم

All Science Journal Classification (ASJC) codes

  • !!General Mathematics

بصمة

أدرس بدقة موضوعات البحث “Isotopy-invariant topological measures on closed orientable surfaces of higher genus'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا