Generalized sampling expansion for functions on the sphere

Ilan Ben Hagai, Filippo Maria Fazi, Boaz Rafaely

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

Functions on the sphere appear in several applications, including geodesics, imaging and acoustics. Sampling of these functions may result in aliasing if the sampling condition is not met. The generalized sampling expansion introduced by Papoulis enables the reconstruction of a band-limited function sampled at a frequency lower than the Nyquist frequency using the outputs of several linear time-invariant systems. This paper formulates the generalized sampling expansion for functions on the sphere using spherical harmonics decomposition, facilitating sub-Nyquit sampling without aliasing error. An analysis of linear systems on the sphere and the aliasing phenomenon in the spherical harmonics domain is presented. Examples demonstrating the performance of the method and its limitations are studied.

اللغة الأصليةإنجليزيّة أمريكيّة
رقم المقال6252066
الصفحات (من إلى)5870-5879
عدد الصفحات10
دوريةIEEE Transactions on Signal Processing
مستوى الصوت60
رقم الإصدار11
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 22 أكتوبر 2012

All Science Journal Classification (ASJC) codes

  • !!Signal Processing
  • !!Electrical and Electronic Engineering

بصمة

أدرس بدقة موضوعات البحث “Generalized sampling expansion for functions on the sphere'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا