Extracellular matrix protein expression is brain region dependent

Stephanie Dauth, Thomas Grevesse, Harry Pantazopoulos, Patrick H. Campbell, Ben M. Maoz, Sabina Berretta, Kevin Kit Parker

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء


In the brain, extracellular matrix (ECM) components form networks that contribute to structural and functional diversity. Maladaptive remodeling of ECM networks has been reported in neurodegenerative and psychiatric disorders, suggesting that the brain microenvironment is a dynamic structure. A lack of quantitative information about ECM distribution in the brain hinders an understanding of region-specific ECM functions and the role of ECM in health and disease. We hypothesized that each ECM protein as well as specific ECM structures, such as perineuronal nets (PNNs) and interstitial matrix, are differentially distributed throughout the brain, contributing to the unique structure and function in the various regions of the brain. To test our hypothesis, we quantitatively analyzed the distribution, colocalization, and protein expression of aggrecan, brevican, and tenascin-R throughout the rat brain utilizing immunohistochemistry and mass spectrometry analysis and assessed the effect of aggrecan, brevican, and/or tenascin-R on neurite outgrowth in vitro. We focused on aggrecan, brevican, and tenascin-R as they are especially expressed in the mature brain, and have established roles in brain development, plasticity, and neurite outgrowth. The results revealed a differentiated distribution of all three proteins throughout the brain and indicated that their presence significantly reduces neurite outgrowth in a 3D in vitro environment. These results underline the importance of a unique and complex ECM distribution for brain physiology and suggest that encoding the distribution of distinct ECM proteins throughout the brain will aid in understanding their function in physiology and in turn assist in identifying their role in disease.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)1309-1336
عدد الصفحات28
دوريةJournal of Comparative Neurology
مستوى الصوت524
رقم الإصدار7
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1 مايو 2016
منشور خارجيًانعم

All Science Journal Classification (ASJC) codes

  • !!General Neuroscience


أدرس بدقة موضوعات البحث “Extracellular matrix protein expression is brain region dependent'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا