Entropy stable spectral collocation schemes for the Navier-Stokes Equations: Discontinuous interfaces

Mark H. Carpenter, Travis C. Fisher, Eric J. Nielsen, Steven H. Frankel

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

Nonlinear entropy stability and a summation-by-parts framework are used to derive provably stable, polynomial-based spectral collocation element methods of arbitrary order for the compressible Navier-Stokes equations. The new methods are similar to strong form, nodal discontinuous Galerkin spectral elements but conserve entropy for the Euler equations and are entropy stable for the Navier-Stokes equations. Shock capturing follows immediately by combining them with a dissipative companion operator via a comparison approach. Smooth and discontinuous test cases are presented that demonstrate their efficacy.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)B835-B867
دوريةSIAM Journal on Scientific Computing
مستوى الصوت36
رقم الإصدار5
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2014
منشور خارجيًانعم

All Science Journal Classification (ASJC) codes

  • !!Computational Mathematics
  • !!Applied Mathematics

بصمة

أدرس بدقة موضوعات البحث “Entropy stable spectral collocation schemes for the Navier-Stokes Equations: Discontinuous interfaces'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا