Double and Triple Node-Erasure-Correcting Codes over Complete Graphs

Lev Yohananov, Yuval Efron, Eitan Yaakobi

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

In this paper we study array-based codes over graphs for correcting multiple node failures. These codes have applications to neural networks, associative memories, and distributed storage systems. We assume that the information is stored on the edges of a complete undirected graph and a node failure is the event where all the edges in the neighborhood of a given node have been erased. A code over graphs is called ρ-node-erasure-correcting if it allows to reconstruct the erased edges upon the failure of any ρ nodes or less. We present a binary optimal construction for double-node-erasure correction together with an efficient decoding algorithm, when the number of nodes is a prime number. Furthermore, we extend this construction for triple-node-erasure-correcting codes when the number of nodes is a prime number and two is a primitive element in mathbb Z n. These codes are at most a single bit away from optimality.

اللغة الأصليةإنجليزيّة أمريكيّة
رقم المقال8985404
الصفحات (من إلى)4089-4103
عدد الصفحات15
دوريةIEEE Transactions on Information Theory
مستوى الصوت66
رقم الإصدار7
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1 يوليو 2020

All Science Journal Classification (ASJC) codes

  • !!Information Systems
  • !!Computer Science Applications
  • !!Library and Information Sciences

بصمة

أدرس بدقة موضوعات البحث “Double and Triple Node-Erasure-Correcting Codes over Complete Graphs'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا